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The Richtmyer–Meshkov instability in an incompressible and compressible stratified
two-dimensional ideal flow is studied analytically and numerically. For the incom-
pressible problem, we initialize a single small-amplitude sinusoidal perturbation of
wavelength λ, we compute a series expansion for the amplitude a in powers of t up
to t(11) with the MuPAD computer algebra environment. This involves harmonics up
to eleven. The simulations are performed with two codes: incompressible, a vortex-
in-cell numerical technique which tracks a single discontinuous density interface; and
compressible, PPM for a shock-accelerated case with a finite interfacial transition
layer (ITL). We identify properties of the interface at time t = tM at which it first
becomes ‘multivalued’. Here, we find the normalized width of the ‘spike’ is related
to the Atwood number by (wm/λ)− 0.5 = −0.33A. A high-order Padé approximation
is applied to the analytical series during early time and gives excellent results for
the interface growth rate ȧ. However, at intermediate times, t > tM , the agreement
between numerical results and different-order Padé approximants depends on the At-
wood number. During this phase, our numerical solutions give ȧ ∝ O(t−1) for small
A and ȧ ∝ O(t−0.4) for A = 0.9. Experimental data of Prasad et al. (2000) for SF6

(post shock Atwood number = 0.74) shows an exponent between −0.68 and −0.72
and we obtain −0.683 for the compressible simulation. For this case, we illustrate
the important growth of vortex-accelerated (secondary) circulation deposition of both
signs of vorticity and the complex nature of the roll-up region.

1. Introduction
A perturbed interface between two fluids of different densities acquires vorticity if

it is subjected to an impulsive acceleration, for example, as caused by a shock wave
or by time-dependent gravity effects. The baroclinically deposited primary vorticity
on the interface drives the interface evolution, a phenomenon called the Richtmyer–
Meshkov (RM) instability. The RM instability is of crucial importance for research in
supernova astrophysics, inertial confinement fusion (ICF) and supersonic combustion.
It has been studied over many years: analytically (e.g. Layzer 1955; Haan 1991; Hecht,
Alon & Shvarts 1994; Samtaney & Pullin 1996); numerically (e.g. Meyer & Blewett
1972; Youngs 1984; Picone & Boris 1988; Tryggvason 1988; Hawley & Zabusky 1989;
Mikaelian 1993; Grove 1994); and experimentally (e.g. Meshkov 1969; Andronov et al.
1976; Zaytsev et al. 1985; Dimonte & Remington 1993; Jacobs et al. 1995; Aleshin
et al. 1997). A review of this work which emphasizes the vortex paradigm was given
by Zabusky (1999).
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Figure 1. Schematic of the waveform of the evolved interface for a Richtmyer–Meshkov instability.

For our analysis and simulations, we examine the classical configuration – a planar
interface orthogonal to the exciting gravity with a very small-amplitude sinusoidal
perturbation. Based on previous shock–interface studies (Zabusky 1999) and one new
run in this paper, we assume that there is a circulation per unit length on this interface
which has an identical single harmonic distribution to the amplitude. This gives rise
to a velocity jump tangential to the interface of 2v0. The evolution proceeds through
several phases: ‘very early time’, where a linear analysis suffices; ‘early time’, where
nonlinear effects are important; ‘intermediate time’, where the interface undergoes
multiple rolls producing the well-known ‘mushroom’ configuration, as shown in
figure 1; and late time. The time between early and intermediate we take as the
time when the interface first becomes multivalued, or t = tM , as already introduced in
Zabusky (1999). Note, if we had perturbed the interface with an additional very small-
wavelength perturbation of very small amplitude, it would have become multivalued
much earlier. We assume that these very small wavelengths are not present initially.

The parameters which define the problem are the density ratio or Atwood number
A = (ρ2 − ρ1)/(ρ2 + ρ1), the normalized perturbation amplitude, a0/λ = ka0/2π, and
v0, which is related to the circulation on the interface. A simple quantifier of the
interface evolution is the ‘growth rate’ of the interfacial amplitude, defined as the time
rate of change of half the distance between the ‘spike’ and the ‘bubble’, the highest
and lowest points, respectively, of the interface in figure 1. Note that the natural
variable to normalize time is λ/v0.

The compressible linear phase was studied first by Richtmyer (1960) who derived
a linear ‘impulsive model’ for the growth rate. Yang, Zhang & Sharp (1994) made
a detailed study of the linear phase and validated the parameter ranges where the
Richtmyer model was useful. If the approaching shock is weak, the flow behind
the shock rapidly becomes nearly incompressible as the shock moves away from
the weakly perturbed interface, as discussed by Pham & Meiron (1993), Meiron &
Meloon (1997) and Kotelnikov, Ray & Zabusky (2000). Wouchuk & Nishihara (1996,
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1997) also discussed the physical effects of strong shocks and the reduction of the
growth rate which results from the vorticity deposited in the bulk by the curved
transmitted shock.

For an incompressible regime, attempts were made to calculate analytically non-
linear estimates for the growth rate based on a few term Taylor series expansion by
Haan (1991) and Zhang & Sohn (1996). However, no analysis exists which treats the
‘multivalue’ time and beyond.

The work presented below presents a longer time carefully juxtaposed analytical
and numerical study. In § 2, we describe analytical and numerical techniques for
calculating interface evolution and present numerical results. In particular, we discuss
the time and shape of the interface and its circulation for different Atwood numbers
at the multivalued time. In § 3, we compare the Padé approximant resummation of
the analytical Taylor series with the numerical results. In § 4, we discuss caveats for
calculating beyond intermediate times because of the manifestations of a singularity
on the interface when computing with Euler codes.

2. Analytical and numerical solutions for the evolution of
the RM instability with a sinusoidal interface

2.1. Power series solution in the small amplitude/wavelength ratio a0/λ

In this section, we extend the analytical technique proposed by Zhang & Sohn (1996)
to higher order and discuss the limitations of their suggested arbitrary Padé approach.

We consider a single-valued two-dimensional interfacial curve y = η(x, t) separating
two ideal incompressible fluids of different densities ρ1 and ρ2. Initially, at t = 0, the
interface has a sinusoidal form of wavelength λ (= 2π/k) and amplitude a0

η(x, 0) = a0 cos(kx). (1)

We assume that the flow velocities vi off the interface, are irrotational and can be
obtained from velocity potentials

vi = −∇ϕi for i = 1, 2. (2)

where the velocity potential in each fluid satisfies the Laplace equation:

∇2ϕi(x, y, t) = 0 for i = 1, 2. (3)

The initial conditions for ϕ1 and ϕ2 are assumed to have the same harmonic depen-
dence as the interface

ϕ1 = (v0/k) e−ky cos(kx), ϕ2 = (−v0/k) e+ky cos(kx). (4)

Such a phenomenon would occur if a weak shock were to hit a small-amplitude
sinusoidally perturbed density interface, as described by Kotelnikov et al. (2000
§ 111). Note that kv0 is the initial linear rate of change of the interface and is related
to the circulation deposited on the interface by the weak shock wave. The use of
an interfacial curve (rather than a thin layer) makes this an ill-posed problem, as
discussed by Baker, Caflisch & Siegel (1993). This is manifest in the uncontrolled
small-scale structure which appears at a fixed time as the resolution increases, which
we observe and discuss in § 5.

To match the two potentials ϕ1 and ϕ2, we use two boundary conditions:
(i) kinematic, normal velocity continuity (or Dt (y − η) = 0)

∂tη − ∂xϕi∂xη + ∂yϕi = 0 at y = η for i = 1 and 2. (5)
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(ii) dynamic, pressure continuity

−ρ1∂tϕ1 +ρ2∂tϕ2− 1
2
ρ2[(∂xϕ2)

2 +(∂yϕ2)
2]+ 1

2
ρ1[(∂xϕ1)

2 +(∂yϕ2)
2] = 0 at y = η, (6)

as obtained from Bernoulli’s equation.
Following the procedure of Zhang & Sohn, we assume that the single exponential

z-dependence of the potentials persists and the harmonic x-dependence of density
and potentials persists to higher modes via nonlinear mode coupling or

η =

∞∑
p=1

η(p)(x, t) where η(p) =

j=p∑
j=1

η
(p)
j (t) cos(jx),

ϕ1 =

∞∑
p=1

ϕ
(p)
1 (x, y, t) where ϕ(p)

1 =

j=p∑
j=1

φ
(p)
1,j(t)e

−jky cos(jx),

ϕ2 =

∞∑
p=1

ϕ
(p)
2 (x, y, t) where ϕ(p)

2 =

j=p∑
j=1

φ
(p)
2,j(t)e

+jky cos(jx).


(7)

However, we use the MuPAD (1996) computer algebra environment to perform the
lengthy algebraic calculations and thereby generate a nine-term literal series. MuPAD
expands η(p)

j , ϕ
(p)
1,j and ϕ(p)

2,j in integer powers of a0k and substitutes into the boundary
continuity conditions (5) and (6). Then, it sets y = η(x, t) and uses the orthogonality
relations of cos(jx) to gather like terms. The Appendix presents the normalized η(p),
for p = 1 to p = 6, and those for p = 7 to 9 are available from the authors or
the Journal of Fluid Mechanics Editorial Office, Cambridge. The restriction to nine
terms was governed by our computer memory of 2 Gigabytes. However, with specific
numerical values for the parameters, we were able to obtain eleven series terms and
these representations are used below when comparing with numerical solutions of ȧ.

ȧ ≡ 1
2
(vspike − vbubble) = 1

2
(∂tη(λ/2, t)− (∂tη(0, t)) (8)

However, this series would not represent the solution after the singularity arises.
Also, practically speaking, the series diverges quickly and rational fraction Padé
resummation techniques have been used to regularize this divergence by Zhang &
Sohn (1996). We will see how Padé resummation techniques that employ our higher-
order series are arbitrary, and the prescription of Zhang & Sohn seems accidental.

However, we sufficiently improved the convergence of the series by performing the
re-summation technique differently from Zhang & Sohn (1996): at first, the Padé
approximant of y = η(x, t) was computed and then its time derivative was obtained.
This order of calculations improves the convergence of the series.

2.2. Numerical results for the interface evolution: incompressible

We now present results from the incompressible time-dependent numerical method
which combines the semi-Lagrangian contour advection and adaptive node redis-
tribution algorithm of Dritschel & Ambaum (1997) with the vortex-in-cell (VIC)
method of Tryggvason (1988). This allows us to compute beyond the time when the
interface is single-valued. The algorithm is described in Appendix A of Kotelnikov
et al. (2000). Essentially, there are three processes per step: (i) advect the interfacial
contour using velocities at each node and readjust the spacing between the nodes so
that their density is related to the curvature of the interface; (ii) solve the ODE for
the interfacial circulation γs; (iii) project the interfacial circulation onto a uniform
doubly periodic mesh to obtain vorticity and use FFT to solve Poisson’s equation for
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Figure 2. (a) Interface for three different Atwood numbers at the normalized ‘multivalue’ time
tM ∼ 6. (b) Circulation per unit length γs for three different Atwood numbers at ‘multivalue’
time tM ∼ 6. Parameters are a0/λ = 0.05, v0/λ = 0.04. The appropriate normalization time is
tN = a0/v0 = 1.25.

the stream function and velocities at each mesh point. Interpolate the velocities back
to the contour nodes. Note, the circulation per unit length at the interface can be
expressed in terms of the derivatives of the velocity potential at the interface

γs ≡ (v1 − v2) · s = [∂xφ1 − ∂xφ2 + ∂xη(∂yφ1 − (∂yφ2)]|s/[1 + (∂xη)2]1/2, (9)

where s is a unit vector tangential to the interface. The initial conditions are as given
in (1) and (4) and determine the initial circulation on the interface. We normalize
the amplitude and growth rate by the wavelength λ = 2π or k = 1.0. All runs were
carried out on a doubly periodic domain of 64×128, namely λ was discretized with 64
intervals, as shown in figure 1. Here we see the y-extrema of the interface designated
as ‘spike’ and ‘bubble’.

First, we present simulations for a small-amplitude case, a0/λ = 0.05, v0/λ = 0.04.
The appropriate normalization time is tN = a0/v0 = 1.25. The periodicity in y does
not affect the comparison below to the algebraic results for the infinite y domain
as the interface is far from the boundaries. Below, we discuss the effect of higher
resolution and ill-posedness.

Figure 2 shows the interface for three different A at the ‘multivalue’ time, tM i.e.
where the interface becomes a multivalued function of x. This time is about six for all
incompressible runs and the spike-to-bubble amplitude has grown by a factor of five.
Figure 2(b) shows γs vs. x and we see that the larger A, the closer is the extremum
to the spike point. Note, these extrema correspond to the filled circles in figure 2(b)
and this is the location where the singularity will develop as we refine the mesh.
A = 0 corresponds to the Kelvin–Helmholtz instability and the positive circulation
per unit length is symmetrical about λ/s = 0.25, etc. The approach of the extrema to
the spike is a manifestation of baroclinic effects. That is, the larger A, the larger the
net circulation closer to the spike. Figure 3 shows the width of the finger (distance
between the filled circles) normalized by the wavelength, Wm/λ. This linear variation
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Figure 5. The density and vorticity from a PPM simulation of a shock-accelerated interface of
air/SF6 and a finite interfacial transition layer. (M = 1.55 and post shock Atwood number of 0.74).
Results are shown at times (a) tM , (b) 1.63tM and (c) 2.63tM .
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Figure 6. Circulations corresponding to the simulation of figure 5.
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can be fit with the relation (
Wm

λ
− 1

2

)
/A = −0.33. (10)

In figure 4, we compare the evolutions of three A at t = 20.0 (t = 3.2tM) with the
same initial conditions. The larger A, the larger the amplitude and the smaller the
‘roll-up’. That is, baroclinic processes are weaker at low A and do not inhibit roll-up.
As A increases, the arc length (s) from the first circulation extrema to the spike is
0.43, 0.33 and 0.19 for A = 0.2, 0.6 and 0.9, respectively. Just beyond the extrema
nearest to s = 0.5, the circulation is nearly discontinuous. These are the locations
where the contour changes direction from ingoing to outgoing. For A = 0.6 and
0.9, γ/λ changes sign, after the first extremum, a signature that emerges for all cases
at later time. This is another manifestation of the baroclinic process, as discussed
below.

Note, the minimum width of the neck, Wmin/λ continues a monotonic decrease after
tM ≈ 6. We believe that eventually the width goes to zero as the spike region moves
away from the bubble region at a nearly constant speed, which depends on the total
circulation contained on each side of the axis of symmetry.

2.3. Numerical results for the interface evolution: compressible

To validate our incompressible computations and examine results at longer times,
we show one well-resolved calculation with the PPM code with a finite interfacial
transition layer (ITL) (see Zabusky et al. 2002). We resolved the wavelength by 360
zones and used a0/λ = 0.05, δ0/a0 = 0.111. This choice was made to compare with
the incompressible calculations which were made with 128 zones to one wavelength.
That is, for the incompressible case, we assumed that the grid-‘regularized’ ITL was
1
16

of the wavelength. To correspond to the experiment of Prasad et al. (2000), we
chose M = 1.55 and a post-shock Atwood number of 0.74, corresponding to air/SF6.
For simplicity, we use an identical specific heat of γ = 1.4.

The density and vorticity are shown at three times, tM , 1.63tM and 2.63tM in
figures 5 and 6. Note, the width at tM agrees with (10). The times in figures 5(b, c)
and 6(b, c) are less than the time shown in figure 4(a) for A = 0.6 and yet the density
plots are more complex in the roll-up region for the compressible finite ITL run.
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Figure 8. Comparison of the normalized interfacial growth rates at Atwood number A = 0.2. Shown
are the numerical solution and various order [m/n] Padé approximants including Zhang & Sohn
(1996). The initial parameters are a0 = 0.08λ, v0 = 0.08λ.

This arises because the ITL of the compressible run is constantly narrowed (or the
density gradient grows) owing to interface stretching. This complexity is also seen
in the vorticity and causes the roll-up domain to have different magnitudes, e.g.
of minimum neck size or total elongation, than obtained with the incompressible
run.

In figure 7, we see that a manifestation of the gradient intensification is the persistent
and large growth of positive and negative secondary circulation. This means that the
turbulence and mixing properties in the roll-up domain at intermediate and later
times will be dependent on the initial conditions. This secondary circulation will be
quantified and scaled in a future work. For this case, the growth rate curve in figure 8,
can be fitted with ȧ ∝ O(t−0.68), and −0.68 is the filled circle in figure 13.

3. Intermediate and late time comparisons of ȧ from numerical and
algebraic methods with Padé resummation and with experiment

3.1. Comparisons of ȧ: numerical and algebraic methods

We now compare the amplitude growth rate of (8) from our numerical solutions with
our analytical solutions from an eleven-term series, valid for t < tM; and Zhang &
Sohn’s (1996) four-term series. Since the series solution diverges, we adopt, as Zhang
& Sohn did, a Padé rational fraction representation for series. In our notation, [m/n]
is indicative of the highest degree polynomial in time, m in the numerator and n
in the denominator. Zhang’s model was [1/2], so that its long time behaviour was
ȧ ≈ O(t−1). In the curves that follow, we present the results of the three best Padé
curves out of the many we studied.

In figure 8, we examine the initial conditions a0/λ = 0.08, v0/λ = 0.08, (tN = 1.0)
for A = 0.2. We see that three higher-order Padé approximants, [2/2], [3/3] and [5/5]
agree very closely with the numerical result, which is slightly larger than all of them.
The Zhang & Sohn [1/2] model begins to depart from this cluster of curves at about
t = 2.0. In figure 9, for A = 0.9, we present comparisons of the numerical results with
[3/3], [4/4] and [5/5]. The [4/4] result does best and the others are in as much error
as Zhang & Sohn’s [1/2], which is lower than all of them. Figures 10 and 11 show
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(b) represent the functions ȧ ∝ O(t−1.0) and ȧ ∝ O(t−0.45) (which approximate, for the intermediate
time range, the time dependence of the growth rate at A = 0 and A = 0.9, respectively).

fits for A = 0.2 and 0.5 with, a0/λ = 0.05, v0/λ = 0.04, (tN = 1.25). Most fits are very
good for 5t < 10. The [3,3] curve in figure 11 has a zero in the denominator.

We conclude that in most cases the [1,2] Padé representation of Zhang & Sohn is
inferior to our higher-order Padé representations. Furthermore, there is not a ‘best’
Padé representation using the 11-term analytical series that we obtained from MuPad.

3.2. Comparisons of ȧ: from numerical and experimental methods

3.2.1. Incompressible simulations

In figure 12, we show numerical results for ‘intermediate’ time of ȧ. It varies from
ȧ ∝ O(t−1) for small A to ȧ ∝ O(t−0.4) for A = 0.9. The exponents α of fits of (tα)
to the intermediate-time numerical data of figure 12 are given in figure 13. Here, we
see remarkable agreement with the experiments (Prasad et al. 2000) for an M = 1.55
shock striking an air/SF6 interface, which is placed on the graph at 0.68 (filled circle)
at A = 0.74, the post-shock density ratio. We conclude that during intermediate times,
1 < t/tM < 3, the ȧ decay exponent, α, varies from −0.4 to −1.0, as A varies from 0.2
to 0.9.
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4. Caveats
4.1. Numerical resolution and non-convergence

Baker et al. (1993) have discussed the generalization of the Moore (1979) singularity
to the incompressible Rayleigh–Taylor problem. The manifestation of the ill-posed
nature of the problem has also been discussed for compressible simulations by
Meiron, Baker & Orszag (1982) and Samtaney & Pullin (1996). In our incompressible
CASL/VIC simulations, the interface has at all times an effective finite-layer thickness
of about 3–4 cells. This strongly affects the intermediate-time small-scale structures.
However, the growth rate, which is the result of averaging vortex effects at two
distant points is insensitive to these details, as our finite-ITL PPM simulations
show.

4.2. Power series

We have used an algebraic series in integer powers of t. However, for problems, as
this one, in which singularities arise there may exist ‘exponentially small’ terms which
become more important as we approach the singularity time. Furthermore, we believe
that the singularity will prevent the continuation of an unregularized series beyond
the multivalue time.

5. Summary
In this paper, we have studied, by algebraic and numerical methods, the evolution of

a small-amplitude single-mode interfacial perturbation, undergoing RM instability at
various Atwood numbers. We identify two temporal stages, ‘early’ and ‘intermediate’,
separated by the ‘multivalue’ time.

In the ‘early’ stage, we have improved the analytical theory previously proposed
by Zhang & Sohn (1996) and clarified its range of applicability for the growth
rate of the interface. We have used the MuPad computer algebra environment, to
compute eleven terms in an expansion series in t. The results were compared with
vortex-in-cell numerical simulations. It was shown that, at low Atwood numbers, Padé
approximants provide a very good agreement with the numerical simulations, even
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beyond the ‘multivalue’ time. At intermediate Atwood numbers, the agreement is still
good before the ‘multivalue’ time, and large discrepancy occurs at late time between
the theory and simulations. At high Atwood numbers, we see that the difference
between the theory and simulations increases at early times.

At the ‘multivalue’ time, tM we have shown that the distance between the nearest
points, or the spike width, scales linearly with the Atwood number. This phenomenon
can be explained by the shift of the maximum circulation per unit length on the
interface towards the spike owing to the baroclinic effects. In addition, we have
presented the circulation per unit length on the interface, an important small-scale
feature to which future studies may be compared.

The growth rate of the interface decreases with time. The higher the Atwood num-
ber, the more slowly the growth rate decays. In the intermediate phase, 15 < t < 30,
the growth rate behaves as ȧ ∝ O(t−1) for small A and ȧ ∝ O(t−0.4) for A = 0.9. We
obtain very good agreement with the experimental results of Prasad et al. for incom-
pressible and compressible simulations. However, it remains a challenge to develop
accurate initialization procedures and codes to compute the intermediate–late time
evolution of the turbulent ‘roll-up’ region.

Beyond intermediate times t > 3tM , we see the strong growth of vortex-accelerated
positive and negative circulations in the compressible simulations. In a future work
we will quantify, scale and model these results.

This work was supported in part by the Department of Energy (DOE) (Grant
DE-FG02-98ER25364, monitored by Dr D. Hitchcock. We appreciate discussions
with Professors D. Dritschel (who also gave us his CASL code) and G. Tryggvason,
and also with Dr R. Samtaney and Dr J. Ray. Gnuplot (Williams & Kelley
1999) and Yorick (Munro 1994) graphic packages were used in preparation of the
manuscript.

Appendix
The literal equations for the Taylor series described in § 2.1 were normalized and

the first six are given below. Here we have used

η∗ =

∞∑
p=1

η∗(p)(x, t), where η∗(p) =

j=p∑
j=1

η
∗(p)
j (t) cos(jkx),

where

η∗ = η/a0, η
∗(p)
j = η

(p)
j /k

n−1a0, τ = v0t/a0, Cj = cos(jkx).

Note that the first term in the series was obtained by Richtmyer (1960). The second
term was given first by Haan (1991) and the third and fourth terms were derived by
Zhang & Sohn (1996).

η∗1 = (1 + τ)C1,

η∗2 = 1
2
(Aτ2)C2,

η∗3 = 1
24
{−[3τ2 + τ3 + 4A2τ3]C1 + 3[−3τ2 − τ3 + 4A2τ3]C3},

η∗4 = 1
12
{−[3Aτ2 + 4A3τ4]C2 + [−A(4τ4 + 8τ3 − 3τ2) + 8A3τ4]C4},
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η∗5 =

{[
τ2

12
+
τ3

24
+

1

192
τ4 +

1

960
τ5

]
+ A2

[
− 1

48
τ2 +

7

48
τ3 +

11

48
τ4 +

1

16
τ5

]
+ A4

[
1

60
τ5

]}
C1

+

{[
3

128
τ5 +

15

128
τ4 +

9

32
τ3 +

7

32
τ2

]
+ A2

[
3

16
τ5 +

1

4
τ4 +

3

4
τ3

]
− A4

[
27

40
τ5

]}
C3

+

{
− 5

32
τ2 +

5

32
τ3 +

35

128
τ4 +

7

128
τ5

]
+ A2

[
5

8
τ3 − 5

4
τ4 − 37

48
τ5

]
+ A4

[
25

24
τ5

]}
C5,

η∗6 =

{
A

[
35

192
τ2 − 1

8
τ3 +

13

96
τ4 − 13

120
τ5 − 17

720
τ6

]

+A3

[
15

32
τ4 +

19

40
τ5 +

1

8
τ6

]
+ A5

[
1

10
τ6

]}
C2

+A

[
− 7

32
τ2 +

29

36
τ3 +

7

8
τ4 +

2

15
τ5 +

11

360
τ6

]

+A3

[
−23

12
τ4 +

9

10
τ5 +

277

360
τ6

]
− A5

[
64

45
τ6

]}
C4

+

{
A

[
3

32
τ2 − 3

4
τ3 +

1

4
τ4 +

23

20
τ5 +

23

80
τ6

]
+ A3

[
23

16
τ4 − 5

2
τ5 − 7

4
τ6

]
+ A5

[
9

5
τ6

]}
C6.

The terms for p = 7 to 9 are very lengthy and can be obtained from the authors or
the Journal of Fluid Mechanics Editorial Office, Cambridge.
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